Advertisement
Review Article| Volume 34, ISSUE 2, P269-283, April 2023

Neurosurgical Applications of Magnetic Hyperthermia Therapy

  • Author Footnotes
    1 Co-first authorship.
    Daniel Rivera
    Footnotes
    1 Co-first authorship.
    Affiliations
    Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA

    Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA 15213, USA

    Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15232, USA
    Search for articles by this author
  • Author Footnotes
    1 Co-first authorship.
    Alexander J. Schupper
    Footnotes
    1 Co-first authorship.
    Affiliations
    Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
    Search for articles by this author
  • Alexandros Bouras
    Affiliations
    Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA 15213, USA

    Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15232, USA
    Search for articles by this author
  • Maria Anastasiadou
    Affiliations
    Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
    Search for articles by this author
  • Lawrence Kleinberg
    Affiliations
    Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, 1550 Orleans Street, Baltimore, MD 21231-5678, USA
    Search for articles by this author
  • Dara L. Kraitchman
    Affiliations
    Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
    Search for articles by this author
  • Anilchandra Attaluri
    Affiliations
    Department of Mechanical Engineering, The Pennsylvania State University, 777 West Harrisburg Pike Middletown, PA 17057, USA
    Search for articles by this author
  • Robert Ivkov
    Affiliations
    Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, 1550 Orleans Street, Baltimore, MD 21231-5678, USA

    Department of Oncology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21231-5678, USA

    Department of Mechanical Engineering, Johns Hopkins University, Whiting School of Engineering, 3400 North Charles Street, Baltimore, MD 21218, USA

    Department of Materials Science and Engineering, Johns Hopkins University, Whiting School of Engineering, 3400 North Charles Street, Baltimore, MD 21218, USA
    Search for articles by this author
  • Constantinos G. Hadjipanayis
    Correspondence
    Corresponding author.
    Affiliations
    Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA

    Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA 15213, USA

    Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15232, USA
    Search for articles by this author
  • Author Footnotes
    1 Co-first authorship.
Published:January 30, 2023DOI:https://doi.org/10.1016/j.nec.2022.11.004

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Neurosurgery Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alumutairi L.
        • Yu B.
        • Filka M.
        • et al.
        Mild magnetic nanoparticle hyperthermia enhances the susceptibility of Staphylococcus aureus biofilm to antibiotics.
        Int J Hyperthermia. 2020; 37: 66-75
        • Gao X.
        • Chen H.
        Hyperthermia on skin immune system and its application in the treatment of human papillomavirus-infected skin diseases.
        Front Med. 2014; 8 (Epub 2014/01/10): 1-5
      1. Roussakow S. The history of hyperthermia rise and decline. Conference papers in science. Hindawi; John Wiley & Sons, London UK; USA2013
        • Attaluri A.
        • Kandala S.K.
        • Wabler M.
        • et al.
        Magnetic nanoparticle hyperthermia enhances radiation therapy: a study in mouse models of human prostate cancer.
        Int J Hyperthermia. 2015; 31: 359-374
        • Gunderson L.L.
        • Tepper J.E.
        Clinical radiation oncology.
        Elsevier Health Sciences, USA2015
        • Kalamida D.
        • Karagounis I.V.
        • Mitrakas A.
        • et al.
        Fever-range hyperthermia vs. hypothermia effect on cancer cell viability, proliferation and HSP90 expression.
        PLoS One. 2015; 10: e0116021
        • van der Zee J.
        Heating the patient: a promising approach?.
        Ann Oncol. 2002; 13: 1173-1184
        • Fajardo L.F.
        • Egbert B.
        • Marmor J.
        • et al.
        Effects of hyperthermia in a malignant tumor.
        Cancer. 1980; 45: 613-623
        • Moon S.D.
        • Ohguri T.
        • Imada H.
        • et al.
        Definitive radiotherapy plus regional hyperthermia with or without chemotherapy for superior sulcus tumors: a 20-year, single center experience.
        Lung Cancer. 2011; 71: 338-343
        • Kampinga H.H.
        Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field.
        Int J Hyperthermia. 2006; 22: 191-196
        • Pu P-y
        • Zhang Y-z
        • Jiang D-h
        Apoptosis induced by hyperthermia in human glioblastoma cell line and murine glioblastoma.
        Chin J Cancer Res. 2000; 12: 257-262
        • Lee Titsworth W.
        • Murad G.J.
        • Hoh B.L.
        • et al.
        Fighting fire with fire: the revival of thermotherapy for gliomas.
        Anticancer Res. 2014; 34: 565-574
        • Man J.
        • Shoemake J.D.
        • Ma T.
        • et al.
        Hyperthermia Sensitizes Glioma Stem-like Cells to Radiation by Inhibiting AKT Signaling.
        Cancer Res. 2015; 75: 1760-1769
        • Ando K.
        • Suzuki Y.
        • Kaminuma T.
        • et al.
        Tumor-specific CD8-positive T cell-mediated antitumor immunity is implicated in the antitumor effect of local hyperthermia.
        Int J Hyperthermia. 2018; 35: 226-231
        • den Brok M.H.M.G.M.
        • Sutmuller R.P.M.
        • van der Voort R.
        • et al.
        In situ tumor ablation creates an antigen source for the generation of antitumor immunity.
        Cancer Res. 2004; 64: 4024-4029
        • Salehi A.
        • Paturu M.R.
        • Patel B.
        • et al.
        Therapeutic enhancement of blood-brain and blood-tumor barriers permeability by laser interstitial thermal therapy.
        Neurooncol Adv. 2020; 2: vdaa071
        • Tabatabaei S.N.
        • Girouard H.
        • Carret A.-S.
        • et al.
        Remote control of the permeability of the blood–brain barrier by magnetic heating of nanoparticles: A proof of concept for brain drug delivery.
        J Control Release. 2015; 206: 49-57
        • Skitzki J.J.
        • Repasky E.A.
        • Evans S.S.
        Hyperthermia as an immunotherapy strategy for cancer.
        Curr Opin Investig Drugs. 2009; 10 (Epub 2009/06/11. PubMed PMID: 19513944; PMCID: PMC2828267): 550-558
        • Kozissnik B.
        • Bohorquez A.C.
        • Dobson J.
        • et al.
        Magnetic fluid hyperthermia: advances, challenges, and opportunity.
        Int J Hyperthermia. 2013; 29: 706-714
        • Dennis C.L.
        • Ivkov R.
        Physics of heat generation using magnetic nanoparticles for hyperthermia.
        Int J Hyperthermia. 2013; 29: 715-729
        • Gavilán H.
        • Simeonidis K.
        • Myrovali E.
        • et al.
        How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios.
        Nanoscale. 2021; 13: 15631-15646
        • Soetaert F.
        • Kandala S.K.
        • Bakuzis A.
        • et al.
        Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles.
        Sci Rep. 2017; 7 (Epub 2017/07/29. PubMed PMID: 28751720; PMCID: PMC5532265 patents, including those describing BNF- and JHU-nanoparticle formulations. All patents are assigned to Johns Hopkins University, micromod Partikeltechnologie, GmbH, or Aduro Biotech, Inc. All other authors declare no competing interests): 6661
        • Lanier O.L.
        • Korotych O.I.
        • Monsalve A.G.
        • et al.
        Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia.
        Int J Hyperthermia. 2019; 36: 686-700
        • Cleveland R.
        • Sylvar D.
        • Ulcek J.
        Evaluating compliance with FCC guidelines for human exposure to radio frequency electromagnetic fields.
        in: OET bulletin 65, UFC commission. US Federal Communications Commission Office of Engineering & Technology, 1997: 11-14
        • Périgo E.A.
        • Hemery G.
        • Sandre O.
        • et al.
        Fundamentals and advances in magnetic hyperthermia.
        Appl Phys Rev. 2015; 2: 041302
        • Soetaert F.
        • Korangath P.
        • Serantes D.
        • et al.
        Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies.
        Adv Drug Deliv Rev. 2020; 163-164: 65-83
        • Jain T.K.
        • Reddy M.K.
        • Morales M.A.
        • et al.
        Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats.
        Mol Pharm. 2008; 5: 316-327
        • Thakor A.S.
        • Jokerst J.V.
        • Ghanouni P.
        • et al.
        Clinically approved nanoparticle imaging agents.
        J Nucl Med. 2016; 57: 1833-1837
        • Healy S.
        • Bakuzis A.F.
        • Goodwill P.W.
        • et al.
        Clinical magnetic hyperthermia requires integrated magnetic particle imaging.
        WIREs Nanomedicine and Nanobiotechnology. 2022; 14: e1779
        • Alromi D.A.
        • Madani S.Y.
        • Seifalian A.
        Emerging Application of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer.
        Polymers (Basel). 2021; 13https://doi.org/10.3390/polym13234146
        • Bulte J.W.
        • Kraitchman D.L.
        Iron oxide MR contrast agents for molecular and cellular imaging.
        NMR Biomed. 2004; 17: 484-499
        • Zhu L.
        • Ma J.
        • Jia N.
        • et al.
        Chitosan-coated magnetic nanoparticles as carriers of 5-fluorouracil: preparation, characterization and cytotoxicity studies.
        Colloids Surf B Biointerfaces. 2009; 68: 1-6
        • Hua M.Y.
        • Liu H.L.
        • Yang H.W.
        • et al.
        The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas.
        Biomaterials. 2011; 32: 516-527
        • Carvalho S.M.
        • Leonel A.G.
        • Mansur A.A.P.
        • et al.
        Bifunctional magnetopolymersomes of iron oxide nanoparticles and carboxymethylcellulose conjugated with doxorubicin for hyperthermo-chemotherapy of brain cancer cells.
        Biomater Sci. 2019; 7: 2102-2122
        • Liu F.
        • Wu H.
        • Peng B.
        • et al.
        Vessel-targeting nanoclovers enable noninvasive delivery of magnetic hyperthermia-chemotherapy combination for brain cancer treatment.
        Nano Lett. 2021; 21: 8111-8118
        • Torres-Lugo M.
        • Rinaldi C.
        Thermal potentiation of chemotherapy by magnetic nanoparticles.
        Nanomedicine (Lond). 2013; 8: 1689-1707
        • Khochaiche A.
        • Westlake M.
        • O'Keefe A.
        • et al.
        First extensive study of silver-doped lanthanum manganite nanoparticles for inducing selective chemotherapy and radio-toxicity enhancement.
        Mater Sci Eng C. 2021; 123: 111970
        • Auerbach M.
        • Ballard H.
        Clinical use of intravenous iron: administration, efficacy, and safety.
        Hematology. 2010; 2010: 338-347
        • Danielson B.G.
        Structure, chemistry, and pharmacokinetics of intravenous iron agents.
        J Am Soc Nephrol. 2004; 15: S93-S98
        • Markides H.
        • Rotherham M.
        • Haj A.J.E.
        Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine.
        J Nanomater. 2012; 2012: Article 13
        • Laurent S.
        • Burtea C.
        • Thirifays C.
        • et al.
        Crucial ignored parameters on nanotoxicology: the importance of toxicity assay modifications and "cell vision".
        PLoS One. 2012; 7: e29997
        • Mahmoudi M.
        • Laurent S.
        • Shokrgozar M.A.
        • et al.
        Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell "vision" versus physicochemical properties of nanoparticles.
        ACS Nano. 2011; 5: 7263-7276
        • Dewey W.C.
        Arrhenius relationships from the molecule and cell to the clinic.
        Int J Hyperthermia. 1994; 10: 457-483
        • Perlstein B.
        • Ram Z.
        • Daniels D.
        • et al.
        Convection-enhanced delivery of maghemite nanoparticles: Increased efficacy and MRI monitoring.
        Neuro Oncol. 2008; 10: 153-161
        • Hadjipanayis C.G.
        • Machaidze R.
        • Kaluzova M.
        • et al.
        EGFRvIII Antibody–Conjugated Iron Oxide Nanoparticles for Magnetic Resonance Imaging–Guided Convection-Enhanced Delivery and Targeted Therapy of Glioblastoma.
        Cancer Res. 2010; 70: 6303-6312
        • Bobo R.H.
        • Laske D.W.
        • Akbasak A.
        • et al.
        Convection-enhanced delivery of macromolecules in the brain.
        Proc Natl Acad Sci U S A. 1994; 91: 2076-2080
        • Shevtsov M.A.
        • Yakovleva L.Y.
        • Nikolaev B.P.
        • et al.
        Tumor targeting using magnetic nanoparticle Hsp70 conjugate in a model of C6 glioma.
        Neuro Oncol. 2014; 16: 38-49
        • Zhou P.
        • Zhao H.
        • Wang Q.
        • et al.
        Photoacoustic-Enabled Self-Guidance in Magnetic-Hyperthermia Fe@Fe3O4 Nanoparticles for Theranostics In Vivo.
        Adv Healthc Mater. 2018; 7: 1701201
        • Jia G.
        • Han Y.
        • An Y.
        • et al.
        NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo.
        Biomaterials. 2018; 178: 302-316
        • Alexiou C.
        • Jurgons R.
        • Schmid R.J.
        • et al.
        Magnetic Drug Targeting—Biodistribution of the Magnetic Carrier and the Chemotherapeutic agent Mitoxantrone after Locoregional Cancer Treatment.
        J Drug Target. 2003; 11: 139-149
        • Maier-Hauff K.
        • Rothe R.
        • Scholz R.
        • et al.
        Intracranial Thermotherapy using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme.
        J Neuro-Oncology. 2007; 81: 53-60
        • Gilchrist R.K.
        • Medal R.
        • Shorey W.D.
        • et al.
        Selective inductive heating of lymph nodes.
        Ann Surg. 1957; 146: 596-606
        • Hu R.
        • Ma S.
        • Li H.
        • et al.
        Effect of magnetic fluid hyperthermia on lung cancer nodules in a murine model.
        Oncol Lett. 2011; 2: 1161-1164
        • Kossatz S.
        • Grandke J.
        • Couleaud P.
        • et al.
        Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery.
        Breast Cancer Res. 2015; 17: 66
        • Jordan A.
        • Scholz R.
        • Maier-Hauff K.
        • et al.
        The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma.
        J Neurooncol. 2006; 78: 7-14
        • Zhao Q.
        • Wang L.
        • Cheng R.
        • et al.
        Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models.
        Theranostics. 2012; 2: 113-121
        • Wang L.
        • Dong J.
        • Ouyang W.
        • et al.
        Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles.
        Oncol Rep. 2012; 27: 719-726
        • Johannsen M.
        • Gneveckow U.
        • Thiesen B.
        • et al.
        Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution.
        Eur Urol. 2007; 52: 1653-1661
        • Johannsen M.
        • Gneveckow U.
        • Taymoorian K.
        • et al.
        Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial.
        Int J Hyperthermia. 2007; 23: 315-323
        • Johannsen M.
        • Thiesen B.
        • Wust P.
        • et al.
        Magnetic nanoparticle hyperthermia for prostate cancer.
        Int J Hyperthermia. 2010; 26: 790-795
        • Johannsen M.
        • Gneveckow U.
        • Eckelt L.
        • et al.
        Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique.
        Int J Hyperthermia. 2005; 21: 637-647
      2. AANS. Glioblastoma Multiforme, Available at: https://www.aans.org/Patients/Neurosurgical-Conditions-and-Treatments/Glioblastoma-Multiforme, 2019. Accessed September 1, 2022.

        • Patel A.P.
        • Tirosh I.
        • Trombetta J.J.
        • et al.
        Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma.
        Science. 2014; 344: 1396-1401
        • Ostrom Q.T.
        • Gittleman H.
        • Xu J.
        • et al.
        CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2009–2013.
        Neuro-Oncology. 2016; 18: v1-v75
        • Stupp R.
        • Mason W.P.
        • van den Bent M.J.
        • et al.
        Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma.
        N Engl J Med. 2005; 352: 987-996
        • Sanai N.
        • Polley M.-Y.
        • McDermott M.W.
        • et al.
        An extent of resection threshold for newly diagnosed glioblastomas. 2011; 115: 3
        • Ostrom Q.T.
        • Patil N.
        • Cioffi G.
        • et al.
        CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017.
        Neuro Oncol. 2020; 22: iv1-iv96
        • Vehlow A.
        • Cordes N.
        DDR1 (discoidin domain receptor tyrosine kinase 1) drives glioblastoma therapy resistance by modulating autophagy.
        Autophagy. 2019; 15: 1487-1488
        • Shergalis A.
        • Bankhead 3rd, A.
        • Luesakul U.
        • et al.
        Current challenges and opportunities in treating glioblastoma.
        Pharmacol Rev. 2018; 70: 412-445
        • Safari M.
        • Khoshnevisan A.
        Cancer stem cells and chemoresistance in glioblastoma multiform: a review article.
        J Stem Cells. 2015; 10: 271-285
        • Gerard C.S.
        • Straus D.
        • Byrne R.W.
        Surgical Management of Low-Grade Gliomas.
        Semin Oncol. 2014; 41: 458-467
        • Díez Valle R.
        • Hadjipanayis C.G.
        • Stummer W.
        Established and emerging uses of 5-ALA in the brain: an overview.
        J Neurooncol. 2019; 141: 487-494
        • Lan X.
        • Jörg D.J.
        • Cavalli F.M.G.
        • et al.
        Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy.
        Nature. 2017; 549: 227-232
        • Lathia J.D.
        • Mack S.C.
        • Mulkearns-Hubert E.E.
        • et al.
        Cancer stem cells in glioblastoma.
        Genes Dev. 2015; 29: 1203-1217
        • Sneed P.K.
        • Stauffer P.R.
        • McDermott M.W.
        • et al.
        Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/- hyperthermia for glioblastoma multiforme.
        Int J Radiat Oncol Biol Phys. 1998; 40: 287-295
        • Corry P.M.
        • Robinson S.
        • Getz S.
        Hyperthermic effects on DNA repair mechanisms.
        Radiology. 1977; 123: 475-482
        • Ihara M.
        • Takeshita S.
        • Okaichi K.
        • et al.
        Heat exposure enhances radiosensitivity by depressing DNA-PK kinase activity during double strand break repair.
        Int J Hyperthermia. 2014; 30: 102-109
        • Nytko K.J.
        • Thumser-Henner P.
        • Russo G.
        • et al.
        Role of HSP70 in response to (thermo)radiotherapy: analysis of gene expression in canine osteosarcoma cells by RNA-seq.
        Sci Rep. 2020; 10: 12779
        • Khurana N.
        • Laskar S.
        • Bhattacharyya M.K.
        • et al.
        Hsp90 induces increased genomic instability toward DNA-damaging agents by tuning down RAD53 transcription.
        Mol Biol Cell. 2016; 27: 2463-2478
        • Corry P.M.
        • Dewhirst M.W.
        Thermal medicine, heat shock proteins and cancer.
        Int J Hyperthermia. 2005; 21: 675-677
        • van den Tempel N.
        • Zelensky A.N.
        • Odijk H.
        • et al.
        On the Mechanism of Hyperthermia-Induced BRCA2 Protein Degradation.
        Cancers (Basel). 2019; 11https://doi.org/10.3390/cancers11010097
        • Krawczyk P.M.
        • Eppink B.
        • Essers J.
        • et al.
        Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition.
        Proc Natl Acad Sci U S A. 2011; 108: 9851-9856
        • Ko S.H.
        • Ueno T.
        • Yoshimoto Y.
        • et al.
        Optimizing a Novel Regional Chemotherapeutic Agent against Melanoma: Hyperthermia-Induced Enhancement of Temozolomide Cytotoxicity.
        Clin Cancer Res. 2006; 12: 289-297
        • Marino A.
        • Camponovo A.
        • Degl'Innocenti A.
        • et al.
        Multifunctional temozolomide-loaded lipid superparamagnetic nanovectors: dual targeting and disintegration of glioblastoma spheroids by synergic chemotherapy and hyperthermia treatment.
        Nanoscale. 2019; 11: 21227-21248
        • Yang X.
        • Gao M.
        • Xu R.
        • et al.
        Hyperthermia combined with immune checkpoint inhibitor therapy in the treatment of primary and metastatic tumors.
        Front Immunol. 2022; 13https://doi.org/10.3389/fimmu.2022.969447
        • Yan B.
        • Liu C.
        • Wang S.
        • et al.
        Magnetic hyperthermia induces effective and genuine immunogenic tumor cell death with respect to exogenous heating.
        J Mater Chem B. 2022; 10: 5364-5374
        • Maier-Hauff K.
        • Ulrich F.
        • Nestler D.
        • et al.
        Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme.
        J Neurooncol. 2011; 103: 317-324
        • Bouras A.
        • Kaluzova M.
        • Hadjipanayis C.G.
        Radiosensitivity enhancement of radioresistant glioblastoma by epidermal growth factor receptor antibody-conjugated iron-oxide nanoparticles.
        J Neurooncol. 2015; 124: 13-22
        • Kaluzova M.
        • Bouras A.
        • Machaidze R.
        • et al.
        Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles.
        Oncotarget. 2015; 6: 8788-8806
        • Grauer O.
        • Jaber M.
        • Hess K.
        • et al.
        Combined intracavitary thermotherapy with iron oxide nanoparticles and radiotherapy as local treatment modality in recurrent glioblastoma patients.
        J Neurooncol. 2019; 141: 83-94
        • Platt S.
        • Nduom E.
        • Kent M.
        • et al.
        Canine model of convection-enhanced delivery of cetuximab-conjugated iron-oxide nanoparticles monitored with magnetic resonance imaging.
        Clin Neurosurg. 2012; 59: 107-113
        • Jordan A.
        Hyperthermia classic commentary: ‘Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia’ by Andreas Jordan et al., International Journal of Hyperthermia, 1993;9:51–68.
        Int J Hyperthermia. 2009; 25: 512-516
        • Liu L.
        • Ni F.
        • Zhang J.
        • et al.
        Thermal analysis in the rat glioma model during directly multipoint injection hyperthermia incorporating magnetic nanoparticles.
        J Nanosci Nanotechnol. 2011; 11: 10333-10338
        • Burton C.
        • Hill M.
        • Walker A.E.
        The RF Thermoseed-A Thermally Self-Regulating Implant for the Production of Brain Lesions.
        IEEE Trans Biomed Eng. 1971; 18 (BME-): 104-109
        • Gupta R.
        • Sharma D.
        (Carboxymethyl-stevioside)-coated magnetic dots for enhanced magnetic hyperthermia and improved glioblastoma treatment.
        Colloids Surf B Biointerfaces. 2021; 205: 111870
        • Shinkai M.
        • Yanase M.
        • Honda H.
        • et al.
        Intracellular hyperthermia for cancer using magnetite cationic liposomes: in vitro study.
        Jpn J Cancer Res. 1996; 87: 1179-1183
        • Yin P.T.
        • Shah B.P.
        • Lee K.B.
        Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells.
        Small. 2014; 10: 4106-4112
        • Adamiano A.
        • Wu V.M.
        • Carella F.
        • et al.
        Magnetic calcium phosphates nanocomposites for the intracellular hyperthermia of cancers of bone and brain.
        Nanomedicine (Lond). 2019; 14: 1267-1289
        • Hamdous Y.
        • Chebbi I.
        • Mandawala C.
        • et al.
        Biocompatible coated magnetosome minerals with various organization and cellular interaction properties induce cytotoxicity towards RG-2 and GL-261 glioma cells in the presence of an alternating magnetic field.
        J Nanobiotechnology. 2017; 15: 74
        • Zamora-Mora V.
        • Fernández-Gutiérrez M.
        • González-Gómez Á.
        • et al.
        Chitosan nanoparticles for combined drug delivery and magnetic hyperthermia: From preparation to in vitro studies.
        Carbohydr Polym. 2017; 157: 361-370
        • Mamani J.B.
        • Marinho B.S.
        • Rego G.N.A.
        • et al.
        Magnetic hyperthermia therapy in glioblastoma tumor on-a-Chip model.
        Einstein (Sao Paulo). 2020; 18: eAO4954
        • Anilkumar T.S.
        • Lu Y.J.
        • Chen J.P.
        Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy.
        Int J Mol Sci. 2020; 21https://doi.org/10.3390/ijms21155187
        • Minaei S.E.
        • Khoei S.
        • Khoee S.
        • et al.
        Sensitization of glioblastoma cancer cells to radiotherapy and magnetic hyperthermia by targeted temozolomide-loaded magnetite tri-block copolymer nanoparticles as a nanotheranostic agent.
        Life Sci. 2022; 306: 120729
        • Ito A.
        • Shinkai M.
        • Honda H.
        • et al.
        Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles.
        Cancer Immunol Immunother. 2003; 52: 80-88
        • Xu H.
        • Zong H.
        • Ma C.
        • et al.
        Evaluation of nano-magnetic fluid on malignant glioma cells.
        Oncol Lett. 2017; 13: 677-680
        • Rego G.N.A.
        • Mamani J.B.
        • Souza T.K.F.
        • et al.
        Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model.
        Einstein (Sao Paulo). 2019; 17: eAO4786
        • Rego G.N.A.
        • Nucci M.P.
        • Mamani J.B.
        • et al.
        Therapeutic efficiency of multiple applications of magnetic hyperthermia technique in glioblastoma using aminosilane coated iron oxide nanoparticles: in vitro and in vivo study.
        Int J Mol Sci. 2020; 21https://doi.org/10.3390/ijms21030958
        • Alphandéry E.
        • Idbaih A.
        • Adam C.
        • et al.
        Chains of magnetosomes with controlled endotoxin release and partial tumor occupation induce full destruction of intracranial U87-Luc glioma in mice under the application of an alternating magnetic field.
        J Control Release. 2017; 262: 259-272https://doi.org/10.1016/j.jconrel.2017.07.020
        • Alphandéry E.
        • Idbaih A.
        • Adam C.
        • et al.
        Development of non-pyrogenic magnetosome minerals coated with poly-l-lysine leading to full disappearance of intracranial U87-Luc glioblastoma in 100% of treated mice using magnetic hyperthermia.
        Biomaterials. 2017; 141: 210-222
        • Le Fèvre R.
        • Durand-Dubief M.
        • Chebbi I.
        • et al.
        Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma.
        Theranostics. 2017; 7: 4618-4631
        • Yi G.Q.
        • Gu B.
        • Chen L.K.
        The safety and efficacy of magnetic nano-iron hyperthermia therapy on rat brain glioma.
        Tumour Biol. 2014; 35: 2445-2449
        • Liu L.
        • Ni F.
        • Zhang J.
        • et al.
        Silver nanocrystals sensitize magnetic-nanoparticle-mediated thermo-induced killing of cancer cells.
        Acta Biochim Biophys Sinica. 2011; 43: 316-323
        • Ohno T.
        • Wakabayashi T.
        • Takemura A.
        • et al.
        Effective solitary hyperthermia treatment of malignant glioma using stick type CMC-magnetite. In vivo study.
        J Neurooncol. 2002; 56: 233-239
        • Meenach S.A.
        • Hilt J.Z.
        • Anderson K.W.
        Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy.
        Acta Biomater. 2010; 6: 1039-1046
        • Zhao L.
        • Yang B.
        • Wang Y.
        • et al.
        Thermochemotherapy mediated by novel solar-planet structured magnetic nanocomposites for glioma treatment.
        J Nanosci Nanotechnol. 2012; 12: 1024-1031
        • Arriaga M.A.
        • Enriquez D.M.
        • Salinas A.D.
        • Garcia Jr., R.
        • et al.
        Application of iron oxide nanoparticles to control the release of minocycline for the treatment of glioblastoma.
        Future Med Chem. 2021; 13: 1833-1843
        • Jiang H.
        • Wang C.
        • Guo Z.
        • et al.
        Silver nanocrystals mediated combination therapy of radiation with magnetic hyperthermia on glioma cells.
        J Nanosci Nanotechnol. 2012; 12: 8276-8281
        • Stauffer P.R.
        • Rodrigues D.B.
        • Goldstein R.
        • et al.
        Feasibility of removable balloon implant for simultaneous magnetic nanoparticle heating and HDR brachytherapy of brain tumor resection cavities.
        Int J Hyperthermia. 2020; 37: 1189-1201
        • Shevtsov M.A.
        • Nikolaev B.P.
        • Yakovleva L.Y.
        • et al.
        Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors.
        Int J Nanomedicine. 2014; 9: 273-287
        • Melo K.P.
        • Makela A.V.
        • Knier N.N.
        • et al.
        Magnetic microspheres can be used for magnetic particle imaging of cancer cells arrested in the mouse brain.
        Magn Reson Med. 2022; 87: 312-322
        • Luo Y.
        • Yang J.
        • Yan Y.
        • et al.
        RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T1-weighted MR imaging of gliomas.
        Nanoscale. 2015; 7: 14538-14546
        • Wang S.
        • Shen H.
        • Mao Q.
        • et al.
        Macrophage-Mediated Porous Magnetic Nanoparticles for Multimodal Imaging and Postoperative Photothermal Therapy of Gliomas.
        ACS Appl Mater Inter. 2021; 13: 56825-56837
        • Taher Z.
        • Legge C.
        • Winder N.
        • et al.
        Magnetosomes and Magnetosome Mimics: Preparation, Cancer Cell Uptake and Functionalization for Future Cancer Therapies.
        Pharmaceutics. 2021; 13https://doi.org/10.3390/pharmaceutics13030367
        • Bulte J.W.M.
        Superparamagnetic iron oxides as MPI tracers: A primer and review of early applications.
        Adv Drug Deliv Rev. 2019; 138: 293-301
        • Gleich B.
        • Weizenecker J.
        Tomographic imaging using the nonlinear response of magnetic particles.
        Nature. 2005; 435: 1214-1217
        • Wu L.C.
        • Zhang Y.
        • Steinberg G.
        • et al.
        A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging.
        AJNR Am J Neuroradiol. 2019; 40: 206-212
        • Stea B.
        • Cetas T.C.
        • Cassady J.R.
        • et al.
        Interstitial thermoradiotherapy of brain tumors: preliminary results of a phase I clinical trial.
        Int J Radiat Oncol Biol Phys. 1990; 19: 1463-1471
        • Stea B.
        • Kittelson J.
        • Cassady J.R.
        • et al.
        Treatment of malignant gliomas with interstitial irradiation and hyperthermia.
        Int J Radiat Oncol Biol Phys. 1992; 24: 657-667
        • Iacono R.P.
        • Stea B.
        • Lulu B.A.
        • et al.
        Template-guided stereotactic implantation of malignant brain tumors for interstitial thermoradiotherapy.
        Stereotact Funct Neurosurg. 1992; 59: 199-204
        • Stea B.
        • Rossman K.
        • Kittelson J.
        • et al.
        Interstitial irradiation versus interstitial thermoradiotherapy for supratentorial malignant gliomas: a comparative survival analysis.
        Int J Radiat Oncol Biol Phys. 1994; 30: 591-600
        • Kobayashi T.
        • Kida Y.
        • Tanaka T.
        • et al.
        Interstitial hyperthermia of malignant brain tumors by implant heating system: clinical experience.
        J Neurooncol. 1991; 10: 153-163
        • Jordan A.
        • Wust P.
        • Fählin H.
        • et al.
        Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia.
        Int J Hyperthermia. 1993; 9: 51-68
        • Mehdaoui B.
        • Carrey J.
        • Stadler M.
        • et al.
        Influence of a transverse static magnetic field on the magnetic hyperthermia properties and high-frequency hysteresis loops of ferromagnetic FeCo nanoparticles.
        Appl Phys Lett. 2012; 100: 052403
        • Rodrigues H.F.
        • Mello F.M.
        • Branquinho L.C.
        • et al.
        Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
        Int J Hyperthermia. 2013; 29: 752-767
        • Lewis M.A.
        • Staruch R.M.
        • Chopra R.
        Thermometry and ablation monitoring with ultrasound.
        Int J Hyperthermia. 2015; 31: 163-181
        • Hadadian Y.
        • Uliana J.H.
        • Carneiro A.A.O.
        • et al.
        A Novel Theranostic Platform: Integration of Magnetomotive and Thermal Ultrasound Imaging With Magnetic Hyperthermia.
        IEEE Trans Biomed Eng. 2021; 68: 68-77
        • Ortgies D.H.
        • Teran F.J.
        • Rocha U.
        • et al.
        Optomagnetic Nanoplatforms for In Situ Controlled Hyperthermia.
        Adv Funct Mater. 2018; 28: 1704434
        • Rodrigues H.F.
        • Capistrano G.
        • Bakuzis A.F.
        In vivo magnetic nanoparticle hyperthermia: a review on preclinical studies, low-field nano-heaters, noninvasive thermometry and computer simulations for treatment planning.
        Int J Hyperthermia. 2020; 37: 76-99
        • Tay Z.W.
        • Chandrasekharan P.
        • Chiu-Lam A.
        • et al.
        Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy.
        ACS Nano. 2018; 12: 3699-3713
        • Graeser M.
        • Thieben F.
        • Szwargulski P.
        • et al.
        Human-sized magnetic particle imaging for brain applications.
        Nat Commun. 2019; 10: 1936
        • Borgert J.
        • Schmidt J.D.
        • Schmale I.
        • et al.
        Perspectives on clinical magnetic particle imaging.
        Biomed Tech (Berl). 2013; 58: 551-556
        • Shirvalilou S.
        • Khoei S.
        • Esfahani A.J.
        • et al.
        Magnetic Hyperthermia as an adjuvant cancer therapy in combination with radiotherapy versus radiotherapy alone for recurrent/progressive glioblastoma: a systematic review.
        J Neurooncol. 2021; 152: 419-428