Advertisement
Review Article| Volume 34, ISSUE 2, P199-207, April 2023

The Evolution of Laser-Induced Thermal Therapy for the Treatment of Gliomas

  • Purvee D. Patel
    Affiliations
    Department of Neurosurgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health - Jersey Shore University Medical Center, Nutley, NJ 07110, USA

    Department of Neurosurgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Jersey Shore University Hospital, Jersey Shore University Medical Center, 19 Davis Avenue, Hope Tower 4th Floor, Neptune, NJ 07753, USA
    Search for articles by this author
  • Nitesh V. Patel
    Affiliations
    Department of Neurosurgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health - Jersey Shore University Medical Center, Nutley, NJ 07110, USA

    Department of Neurosurgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Jersey Shore University Hospital, Jersey Shore University Medical Center, 19 Davis Avenue, Hope Tower 4th Floor, Neptune, NJ 07753, USA
    Search for articles by this author
  • Shabbar F. Danish
    Correspondence
    Corresponding author. Department of Neurosurgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Jersey Shore University Hospital, Jersey Shore University Medical Center, 19 Davis Avenue, Hope Tower 4th Floor, Neptune, NJ 07753.
    Affiliations
    Department of Neurosurgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health - Jersey Shore University Medical Center, Nutley, NJ 07110, USA

    Department of Neurosurgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Jersey Shore University Hospital, Jersey Shore University Medical Center, 19 Davis Avenue, Hope Tower 4th Floor, Neptune, NJ 07753, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Neurosurgery Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Patel P.
        • Patel N.V.
        • Danish S.F.
        Intracranial MR-guided laser-induced thermal therapy: single-center experience with the Visualase thermal therapy system.
        J Neurosurg. 2016; : 1-8https://doi.org/10.3171/2015.7.JNS15244
        • Smits A.
        • Jakola A.S.
        Clinical presentation, natural history, and prognosis of diffuse low-grade gliomas.
        Neurosurg Clin N Am. 2019; 30: 35-42
        • DeAngelis L.M.
        Brain tumors.
        N Engl J Med. 2001; 344: 114-123
        • Wen P.Y.
        • Weller M.
        • Lee E.Q.
        • et al.
        Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions.
        Neuro Oncol. 2020; 22: 1073-1113
        • Berger T.R.
        • Wen P.Y.
        • Lang-Orsini M.
        • et al.
        World Health Organization 2021 classification of central nervous system tumors and implications for therapy for adult-type gliomas: a review.
        JAMA Oncol. 2022; 8: 1493-1501
        • Louis D.N.
        • Perry A.
        • Wesseling P.
        • et al.
        The 2021 WHO classification of tumors of the central nervous system: a summary.
        Neuro Oncol. 2021; 23: 1231-1251
        • Stupp R.
        • Mason W.P.
        • van den Bent M.J.
        • et al.
        Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.
        N Engl J Med. 2005; 352: 987-996
        • Jakola A.S.
        • Myrmel K.S.
        • Kloster R.
        • et al.
        Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas.
        JAMA. 2012; 308: 1881-1888
        • Sanai N.
        • Berger M.S.
        Glioma extent of resection and its impact on patient outcome.
        Neurosurgery. 2008; 62 ([discussion: 264–6]): 753-764
        • Stummer W.
        • Reulen H.J.
        • Meinel T.
        • et al.
        Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias.
        Neurosurgery. 2008; 62 ([discussion: 564–76]): 564-576
        • Vuorinen V.
        • Hinkka S.
        • Farkkila M.
        • et al.
        Debulking or biopsy of malignant glioma in elderly people - a randomised study.
        Acta Neurochir (Wien). 2003; 145: 5-10
        • Brown T.J.
        • Brennan M.C.
        • Li M.
        • et al.
        Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis.
        JAMA Oncol. 2016; 2: 1460-1469
        • Lacroix M.
        • Abi-Said D.
        • Fourney D.R.
        • et al.
        A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival.
        J Neurosurg. 2001; 95: 190-198
        • Sanai N.
        • Polley M.Y.
        • McDermott M.W.
        • et al.
        An extent of resection threshold for newly diagnosed glioblastomas.
        J Neurosurg. 2011; 115: 3-8
        • Hardesty D.A.
        • Sanai N.
        The value of glioma extent of resection in the modern neurosurgical era.
        Front Neurol. 2012; 3: 140
        • Stummer W.
        • Pichlmeier U.
        • Meinel T.
        • et al.
        Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial.
        Lancet Oncol. 2006; 7: 392-401
        • Eatz T.A.
        • Eichberg D.G.
        • Lu V.M.
        • et al.
        Intraoperative 5-ALA fluorescence-guided resection of high-grade glioma leads to greater extent of resection with better outcomes: a systematic review.
        J Neurooncol. 2022; 156: 233-256
        • Satoh M.
        • Nakajima T.
        • Yamaguchi T.
        • et al.
        Evaluation of augmented-reality based navigation for brain tumor surgery.
        J Clin Neurosci. 2021; 94: 305-314
        • Henderson F.
        • Abdullah K.G.
        • Verma R.
        • et al.
        Tractography and the connectome in neurosurgical treatment of gliomas: the premise, the progress, and the potential.
        Neurosurg Focus. 2020; 48: E6
        • Duffau H.
        Brain connectomics applied to oncological neuroscience: from a traditional surgical strategy focusing on glioma topography to a meta-network approach.
        Acta Neurochir (Wien). 2021; 163: 905-917
        • Hirono S.
        • Ozaki K.
        • Kobayashi M.
        • et al.
        Oncological and functional outcomes of supratotal resection of IDH1 wild-type glioblastoma based on (11)C-methionine PET: a retrospective, single-center study.
        Sci Rep. 2021; 11: 14554
        • Bell Jr., E.
        • Karnosh L.J.
        Cerebral hemispherectomy; report of a case 10 years after operation.
        J Neurosurg. 1949; 6: 285-293
        • Li Y.M.
        • Suki D.
        • Hess K.
        • et al.
        The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection?.
        J Neurosurg. 2016; 124: 977-988
        • de Leeuw C.N.
        • Vogelbaum M.A.
        Supratotal resection in glioma: a systematic review.
        Neuro Oncol. 2019; 21: 179-188
        • D'Amico R.S.
        • Englander Z.K.
        • Canoll P.
        • et al.
        Extent of resection in glioma-a review of the cutting edge.
        World Neurosurg. 2017; 103: 538-549
        • Smith J.S.
        • Chang E.F.
        • Lamborn K.R.
        • et al.
        Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas.
        J Clin Oncol. 2008; 26: 1338-1345
        • Vivas-Buitrago T.
        • Domingo R.A.
        • Tripathi S.
        • et al.
        Influence of supramarginal resection on survival outcomes after gross-total resection of IDH-wild-type glioblastoma.
        J Neurosurg. 2022; 136: 1-8
        • Guerrini F.
        • Roca E.
        • Spena G.
        Supramarginal resection for glioblastoma: it is time to set boundaries! A critical review on a hot topic.
        Brain Sci. 2022; : 12https://doi.org/10.3390/brainsci12050652
        • Merkle E.M.
        • Shonk J.R.
        • Zheng L.
        • et al.
        MR imaging-guided radiofrequency thermal ablation in the porcine brain at 0.2 T.
        Eur Radiol. 2001; 11: 884-892
        • Partridge B.
        • Rossmeisl J.H.
        • Kaloss A.M.
        • et al.
        Novel ablation methods for treatment of gliomas.
        J Neurosci Methods. 2020; 336: 108630
        • Franzini A.
        • Moosa S.
        • Servello D.
        • et al.
        Ablative brain surgery: an overview.
        Int J Hyperthermia. 2019; 36: 64-80
        • Anzai Y.
        • Lufkin R.
        • DeSalles A.
        • et al.
        Preliminary experience with MR-guided thermal ablation of brain tumors.
        AJNR Am J Neuroradiol. 1995; 16 ([discussion: 49–52]): 39-48
        • Barnett G.H.
        • Voigt J.D.
        • Alhuwalia M.S.
        A systematic review and meta-analysis of studies examining the use of brain laser interstitial thermal therapy versus craniotomy for the treatment of high-grade tumors in or near areas of eloquence: an examination of the extent of resection and major complication rates associated with each type of surgery.
        Stereotact Funct Neurosurg. 2016; 94: 164-173
        • Di L.
        • Wang C.P.
        • Shah A.H.
        • et al.
        A cohort study on prognostic factors for laser interstitial thermal therapy success in newly diagnosed glioblastoma.
        Neurosurgery. 2021; 89: 496-503
        • de Groot J.F.
        • Kim A.H.
        • Prabhu S.
        • et al.
        Efficacy of laser interstitial thermal therapy (LITT) for newly diagnosed and recurrent IDH wild-type glioblastoma.
        Neurooncol Adv. 2022; 4: vdac040
        • Mohammadi A.M.
        • Hawasli A.H.
        • Rodriguez A.
        • et al.
        The role of laser interstitial thermal therapy in enhancing progression-free survival of difficult-to-access high-grade gliomas: a multicenter study.
        Cancer Med. 2014; 3: 971-979
        • Shah A.H.
        • Semonche A.
        • Eichberg D.G.
        • et al.
        The role of laser interstitial thermal therapy in surgical neuro-oncology: series of 100 consecutive patients.
        Neurosurgery. 2020; 87: 266-275
        • McNichols R.J.
        • Gowda A.
        • Kangasniemi M.
        • et al.
        MR thermometry-based feedback control of laser interstitial thermal therapy at 980 nm.
        Lasers Surg Med. 2004; 34: 48-55
        • Carpentier A.
        • McNichols R.J.
        • Stafford R.J.
        • et al.
        Laser thermal therapy: real-time MRI-guided and computer-controlled procedures for metastatic brain tumors.
        Lasers Surg Med. 2011; 43: 943-950
        • Carpentier A.
        • McNichols R.J.
        • Stafford R.J.
        • et al.
        Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors.
        Neurosurgery. 2008; 63 ([discussion: ONS28-9]): ONS21-ONS28
        • Missios S.
        • Bekelis K.
        • Barnett G.H.
        Renaissance of laser interstitial thermal ablation.
        Neurosurg Focus. 2015; 38: E13
        • Viozzi I.
        • Guberinic A.
        • Overduin C.G.
        • et al.
        Laser interstitial thermal therapy in patients with newly diagnosed glioblastoma: a systematic review.
        J Clin Med. 2021; : 10https://doi.org/10.3390/jcm10020355
        • Leuthardt E.C.
        • Duan C.
        • Kim M.J.
        • et al.
        Hyperthermic laser ablation of recurrent glioblastoma leads to temporary disruption of the peritumoral blood brain barrier.
        PLoS One. 2016; 11: e0148613
        • Hawasli A.H.
        • Kim A.H.
        • Dunn G.P.
        • et al.
        Stereotactic laser ablation of high-grade gliomas.
        Neurosurg Focus. 2014; 37: E1
        • Muir M.
        • Traylor J.I.
        • Gadot R.
        • et al.
        Repeat laser interstitial thermal therapy for recurrent primary and metastatic intracranial tumors.
        Surg Neurol Int. 2022; 13: 311
        • Park J.K.
        • Hodges T.
        • Arko L.
        • et al.
        Scale to predict survival after surgery for recurrent glioblastoma multiforme.
        J Clin Oncol. 2010; 28: 3838-3843
        • Weller M.
        • Cloughesy T.
        • Perry J.R.
        • et al.
        Standards of care for treatment of recurrent glioblastoma--are we there yet?.
        Neuro Oncol. 2013; 15: 4-27
        • Thomas J.G.
        • Rao G.
        • Kew Y.
        • et al.
        Laser interstitial thermal therapy for newly diagnosed and recurrent glioblastoma.
        Neurosurg Focus. 2016; 41: E12
        • Lee I.
        • Kalkanis S.
        • Hadjipanayis C.G.
        Stereotactic laser interstitial thermal therapy for recurrent high-grade gliomas.
        Neurosurgery. 2016; 79: S24-S34
        • Rodriguez A.
        • Tatter S.B.
        Laser ablation of recurrent malignant gliomas: current status and future perspective.
        Neurosurgery. 2016; 79: S35-S39
        • Munoz-Casabella A.
        • Alvi M.A.
        • Rahman M.
        • et al.
        Laser interstitial thermal therapy for recurrent glioblastoma: pooled analyses of available literature.
        World Neurosurg. 2021; 153: 91-97.e1
        • Schwarzmaier H.J.
        • Eickmeyer F.
        • von Tempelhoff W.
        • et al.
        MR-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: preliminary results in 16 patients.
        Eur J Radiol. 2006; 59: 208-215
        • Sloan A.E.
        • Ahluwalia M.S.
        • Valerio-Pascua J.
        • et al.
        Results of the NeuroBlate system first-in-humans Phase I clinical trial for recurrent glioblastoma: clinical article.
        J Neurosurg. 2013; 118: 1202-1219
        • Carpentier A.
        • Chauvet D.
        • Reina V.
        • et al.
        MR-guided laser-induced thermal therapy (LITT) for recurrent glioblastomas.
        Lasers Surg Med. 2012; 44: 361-368
        • Montemurro N.
        • Anania Y.
        • Cagnazzo F.
        • et al.
        Survival outcomes in patients with recurrent glioblastoma treated with Laser Interstitial Thermal Therapy (LITT): a systematic review.
        Clin Neurol Neurosurg. 2020; 195: 105942
        • Kamath A.A.
        • Friedman D.D.
        • Akbari S.H.A.
        • et al.
        Glioblastoma treated with magnetic resonance imaging-guided laser interstitial thermal therapy: safety, efficacy, and outcomes.
        Neurosurgery. 2019; 84: 836-843
        • Fisher J.P.
        • Adamson D.C.
        Current FDA-approved therapies for high-grade malignant gliomas.
        Biomedicines. 2021; : 9https://doi.org/10.3390/biomedicines9030324
        • Wick W.
        • Gorlia T.
        • Bendszus M.
        • et al.
        Lomustine and bevacizumab in progressive glioblastoma.
        N Engl J Med. 2017; 377: 1954-1963
        • Ivan M.E.
        • Mohammadi A.M.
        • De Deugd N.
        • et al.
        Laser ablation of newly diagnosed malignant gliomas: a meta-analysis.
        Neurosurgery. 2016; 79: S17-S23
        • Muir M.
        • Patel R.
        • Traylor J.I.
        • et al.
        Laser interstitial thermal therapy for newly diagnosed glioblastoma.
        Lasers Med Sci. 2022; 37: 1811-1820
        • Silva D.
        • Sharma M.
        • Barnett G.H.
        Laser ablation vs open resection for deep-seated tumors: evidence for laser ablation.
        Neurosurgery. 2016; 63: 15-26
        • Shah A.H.
        • Burks J.D.
        • Buttrick S.S.
        • et al.
        Laser interstitial thermal therapy as a primary treatment for deep inaccessible gliomas.
        Neurosurgery. 2019; 84: 768-777
        • Ashraf O.
        • Arzumanov G.
        • Luther E.
        • et al.
        Magnetic resonance-guided laser interstitial thermal therapy for posterior fossa neoplasms.
        J Neurooncol. 2020; 149: 533-542
        • Dadey D.Y.
        • Kamath A.A.
        • Smyth M.D.
        • et al.
        Utilizing personalized stereotactic frames for laser interstitial thermal ablation of posterior fossa and mesiotemporal brain lesions: a single-institution series.
        Neurosurg Focus. 2016; 41: E4
        • Borghei-Razavi H.
        • Koech H.
        • Sharma M.
        • et al.
        Laser interstitial thermal therapy for posterior fossa lesions: an initial experience.
        World Neurosurg. 2018; 117: e146-e153
        • Sabahi M.
        • Bordes S.J.
        • Najera E.
        • et al.
        Laser interstitial thermal therapy for posterior fossa lesions: a systematic review and analysis of multi-institutional outcomes.
        Cancers (Basel). 2022; 14https://doi.org/10.3390/cancers14020456
        • Patel B.
        • Yang P.H.
        • Kim A.H.
        The effect of thermal therapy on the blood-brain barrier and blood-tumor barrier.
        Int J Hyperthermia. 2020; 37: 35-43
        • Kennedy B.C.
        • Brown L.T.
        • Komotar R.J.
        • et al.
        Stereotactic catheter placement for Ommaya reservoirs.
        J Clin Neurosci. 2016; 27: 44-47
        • Sandberg D.I.
        • Bilsky M.H.
        • Souweidane M.M.
        • et al.
        Ommaya reservoirs for the treatment of leptomeningeal metastases.
        Neurosurgery. 2000; 47 ([discussion: 54–5]): 49-54
        • Hart M.G.
        • Grant R.
        • Garside R.
        • et al.
        Chemotherapeutic wafers for high grade glioma.
        Cochrane Database Syst Rev. 2008; (CD007294)
        • Perry J.
        • Chambers A.
        • Spithoff K.
        • et al.
        Gliadel wafers in the treatment of malignant glioma: a systematic review.
        Curr Oncol. 2007; 14: 189-194
        • Ashby L.S.
        • Smith K.A.
        • Stea B.
        Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review.
        World J Surg Oncol. 2016; 14: 225
        • Bregy A.
        • Shah A.H.
        • Diaz M.V.
        • et al.
        The role of Gliadel wafers in the treatment of high-grade gliomas.
        Expert Rev Anticancer Ther. 2013; 13: 1453-1461
        • Westphal M.
        • Ram Z.
        • Riddle V.
        • et al.
        • Executive Committee of the Gliadel Study G
        Gliadel wafer in initial surgery for malignant glioma: long-term follow-up of a multicenter controlled trial.
        Acta Neurochir (Wien). 2006; 148 ([discussion: 275]): 269-275
        • Westphal M.
        • Hilt D.C.
        • Bortey E.
        • et al.
        A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma.
        Neuro Oncol. 2003; 5: 79-88
        • Nagpal S.
        The role of BCNU polymer wafers (Gliadel) in the treatment of malignant glioma.
        Neurosurg Clin N Am. 2012; 23 (ix): 289-295
        • Brem H.
        • Piantadosi S.
        • Burger P.C.
        • et al.
        Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group.
        Lancet. 1995; 345: 1008-1012
        • Attenello F.J.
        • Mukherjee D.
        • Datoo G.
        • et al.
        Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience.
        Ann Surg Oncol. 2008; 15: 2887-2893
        • Salcman M.
        • Samaras G.M.
        Hyperthermia for brain tumors: biophysical rationale.
        Neurosurgery. 1981; 9: 327-335
        • Salcman M.
        • Samaras G.M.
        Interstitial microwave hyperthermia for brain tumors. Results of a phase-1 clinical trial.
        J Neurooncol. 1983; 1: 225-236
        • Stea B.
        • Cetas T.C.
        • Cassady J.R.
        • et al.
        Interstitial thermoradiotherapy of brain tumors: preliminary results of a phase I clinical trial.
        Int J Radiat Oncol Biol Phys. 1990; 19: 1463-1471
        • Schupper A.J.
        • Chanenchuk T.
        • Racanelli A.
        • et al.
        Laser hyperthermia: past, present, and future.
        Neuro Oncol. 2022; 24: S42-S51
        • Bown S.G.
        Phototherapy in tumors.
        World J Surg. 1983; 7: 700-709
        • Salehi A.
        • Paturu M.R.
        • Patel B.
        • et al.
        Therapeutic enhancement of blood-brain and blood-tumor barriers permeability by laser interstitial thermal therapy.
        Neurooncol Adv. 2020; 2: vdaa071
        • Butt O.H.
        • Zhou A.Y.
        • Huang J.
        • et al.
        A phase II study of laser interstitial thermal therapy combined with doxorubicin in patients with recurrent glioblastoma.
        Neurooncol Adv. 2021; 3: vdab164
        • Hormigo A.
        • Mandeli J.
        • Hadjipanayis C.
        • et al.
        Phase I study of PD-L1 inhibition with avelumab and laser interstitial thermal therapy in patients with recurrent glioblastoma.
        J Clin Oncol. 2019; 37
        • Hwang H.
        • Huang J.
        • Khaddour K.
        • et al.
        Prolonged response of recurrent IDH-wild-type glioblastoma to laser interstitial thermal therapy with pembrolizumab.
        CNS Oncol. 2022; 11: CNS81